Continuous Leakage Resilient Lossy Trapdoor Functions

نویسندگان

  • Sujuan Li
  • Yi Mu
  • Mingwu Zhang
  • Futai Zhang
چکیده

Lossy trapdoor functions (LTFs) were first introduced by Peikert and Waters (STOC’08). Since their introduction, lossy trapdoor functions have found numerous applications. They can be used as tools to construct important cryptographic primitives such as injective one-way trapdoor functions, chosen-ciphertext-secure public key encryptions, deterministic encryptions, et al. In this paper, we focus on the lossy trapdoor functions in the presence of continuous leakage. We introduce the new notion of updatable lossy trapdoor functions (ULTFs) and give their formal definition and security properties. Based on these, we extend the security model to the LTFs against continuous leakage when the evaluation algorithm is leakage resilient. Under the standard DDH assumption and DCR assumption, respectively, we show two explicit lossy trapdoor functions against continuous leakage in the standard model. In these schemes, using the technology of matrix kernel, the trapdoor can be refreshed at regular intervals and the adversaries can learn unbounded leakage information on the trapdoor along the whole system life. At the same time, we also show the performance of the proposed schemes compared with the known existing continuous leakage resilient lossy trapdoor functions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deterministic Public-Key Encryption Under Continual Leakage

Deterministic public-key encryption, introduced by Bellare, Boldyreva, and O’Neill (CRYPTO 2007), is an important database encryption technique which allows quick, logarithmic-time, search over encrypted data items. The technique is most effective in scenarios where frequent search queries are performed over a huge database of highly sensitive, yet unpredictable, data items such as credit card ...

متن کامل

Statistical Methods in Cryptography

Statistical Methods in Cryptography by Wei Dai Cryptographic assumptions and security goals are fundamentally distributional. As a result, statistical techniques are ubiquitous in cryptographic constructions and proofs. In this thesis, we build upon existing techniques and seek to improve both theoretical and practical constructions in three fundamental primitives in cryptography: blockciphers,...

متن کامل

Building Lossy Trapdoor Functions from Lossy Encryption

Injective one-way trapdoor functions are one of the most fundamental cryptographic primitives. In this work we show how to derandomize lossy encryption (with long messages) to obtain lossy trapdoor functions, and hence injective one-way trapdoor functions. Bellare, Halevi, Sahai and Vadhan (CRYPTO ’98) showed that if Enc is an IND-CPA secure cryptosystem, and H is a random oracle, then x 7→ Enc...

متن کامل

Leakage Resilient One-Way Functions: The Auxiliary-Input Setting

Most cryptographic schemes are designed in a model where perfect secrecy of the secret key is assumed. In most physical implementations, however, some form of information leakage is inherent and unavoidable. To deal with this, a flurry of works showed how to construct basic cryptographic primitives that are resilient to various forms of leakage. Dodis et al. (FOCS ’10) formalized and constructe...

متن کامل

Building Injective Trapdoor Functions From Oblivious Transfer

Injective one-way trapdoor functions are one of the most fundamental cryptographic primitives. In this work we give a novel construction of injective trapdoor functions based on oblivious transfer for long strings. Our main result is to show that any 2-message statistically sender-private semihonest oblivious transfer (OT) for strings longer than the sender randomness implies the existence of i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Information

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017